A stochastic model of long-range interacting particles
نویسندگان
چکیده
Abstract. We introduce a model of long-range interacting particles evolving under a stochastic Monte Carlo dynamics, in which possible increase or decrease in the values of the dynamical variables is accepted with preassigned probabilities. For symmetric increments, the system at long times settles to the Gibbs equilibrium state, while for asymmetric updates, the steady state is out of equilibrium. For the associated Fokker-Planck dynamics in the thermodynamic limit, we compute exactly the phase space distribution in the nonequilibrium steady state, and find that it has a nontrivial form that reduces to the familiar Gibbsian measure in the equilibrium limit.
منابع مشابه
Statistical mechanics of spatial evolutionary games
We discuss the long-run behavior of stochastic dynamics of many interacting players in spatial evolutionary games. In particular, we investigate the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. We discuss similarities and differences between systems of interacting players maximizing their individual payoffs and particles minimizing their in...
متن کاملDiscrete Time Markovian Agents Interacting Through a Potential
A discrete time stochastic model for a multiagent system given in terms of a large collection of interacting Markov chains is studied. The evolution of the interacting particles is described through a time inhomogeneous transition probability kernel that depends on the ‘gradient’ of the potential field. The particles, in turn, dynamically modify the potential field through their cumulative inpu...
متن کاملAbsorbing-State Phase Transition for Stochastic Sandpiles and Activated Random Walks
We study the long-time behavior of conservative interacting particle systems in Z: The Activated Random Walk Model for reaction-diffusion systems and the Stochastic Sandpile. Our main result states that both systems locally fixate when the initial density of particles is small enough, establishing the existence of a non-trivial phase transition in the density parameter. This fact is predicted b...
متن کاملSimulation of Long-term Returns with Stochastic Correlations
This paper focuses on a nonlinear stochastic model for financial simulation and forecasting based on assumptions of multivariate stochastic correlation, with an application to the European market. We present in particular the key elements of a structured hierarchical econometric model that can be used to forecast financial and commodity markets relying on statistical and simulation methods. The...
متن کاملBosonization, vicinal surfaces, and hydrodynamic fluctuation theory.
Through a Euclidean path integral we establish that the density fluctuations of a Fermi fluid in one dimension are related to vicinal surfaces and to the stochastic dynamics of particles interacting through long range forces with inverse distance decay. In the surface picture one easily obtains the Haldane relation, and identifies the scaling exponents governing the low energy, Luttinger liquid...
متن کامل